Positron emission tomography, also called PET imaging or a PET scan, is a diagnostic examination that involves the acquisition of physiologic images based on the detection of radiation from the emission of positrons. Positrons are tiny particles emitted from a radioactive substance administered to the patient. The subsequent images of the human body developed with this technique are used to evaluate a variety of diseases.
PET scans are used most often to detect cancer and to examine the effects of cancer therapy by characterizing biochemical changes in the cancer. These scans can be performed on the whole body.
PET can give false results if a patient's chemical balances are not normal. Specifically, test results of diabetic patients or patients who have eaten within a few hours prior to the examination can be adversely affected because of blood sugar or blood insulin levels.
Also, because the radioactive substance decays quickly and is effective for a short period of time, it must be produced in a laboratory near the PET scanner. It is important to be on time for the appointment and to receive the radioactive substance at the scheduled time. PET must be done by a radiologist who has specialized in nuclear medicine and has substantial experience with PET. Most large medical centers now have PET services available to their patients. Medicare and insurance companies cover many of the applications of PET, and coverage continues to increase.
Finally, the value of a PET scan is enhanced when it is part of a larger diagnostic work-up. This often entails comparison of the PET scan with other imaging studies, such as CT or MRI.